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Abstract

The Green’s function solution for the acoustic wave equation in a two-dimensional rectangular space is expressed as an

infinite series of terms based on the cross modes of the duct. An approximate closed-form solution is obtained by applying

the Euler–Maclaurin sum formula. The procedure provides a closed-form expression in both the space–time and Laplace

domains along with an upper bound for a remainder. Plane wave and higher-order waves components are identified.

A numerical example for an exponential input gives comparisons of the transient response for the approximate closed form

and series Green’s function solutions. The time response and analytical transfer function frequency spectrum of the series

and Euler–Maclaurin closed-form Green’s function are computed. Lastly, the approximate closed-form Green’s transfer

function expression is used in model-based designed feedforward and feedback control schemes to reduce peaks in the

frequency response and provide system damping.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The solution for the Green’s function for the acoustic wave equation in a two-dimensional (2D) space in
terms of an infinite series of cross mode terms has been given by Fahy [1] and Morse and Ingard [2]. In Ref. [1],
the solution is given as a harmonic response in the space–frequency domain while in Ref. [2], the solution is
given as a space–time response. The characteristics of the individual modal terms are clearly defined in each
case but the result is still an infinite series. Zimmer et al. [3] provided an infinite series for the acoustic pressure
in three-dimensional (3D) wave-guides with two finite boundaries and one semi-infinite boundary (i.e. an
acoustical tunnel or duct). They performed extensive numerical calculations to obtain a sum for a truncated
series for a practical application. The use of the Euler–Maclaurin sum formula for obtaining an approximate
numerical value for the sum of an infinite number of terms has received a great deal of attention in the past.
A few appropriate examples are discussed here. The application of the Euler–Maclaurin sum formula to
obtain a numerical result for infinite series has been presented by Riesel [4] where an approximate solution to a
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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double infinite sum has been calculated. The application of the Euler–Maclaurin sum for summing numerical
infinite series in quantum physics problems has also had some activity. Kao et al. [5] computed the total
number of particles interacting by summing an expression in a statistical thermodynamics problem. Fernandez
and Pineiro [6] computed the sum of quantum numbers in problem where large number of energy levels are
included. As with mostly all applications of the Euler–Maclaurin sum formula, the references cited above dealt
with numerical problems resulting in a specific numerical value.

The direct application of the Euler–Maclaurin sum formula to a series defined in space–time has received
little attention in the past. The summation of a space–time series is the underlying concept of its use for this
paper and for several other papers by the author. Panza [7] obtained a closed-form space–time solution for the
Green’s function in a partially bounded acoustical space by applying the Euler–Maclaurin sum formula to the
infinite modal series in the space-Laplace transform domain describing the system. He also applied the result
to determine the space–time response to an exponential time function input with a method of extension to an
arbitrary time function. Additionally, Panza [8] applied the Euler–Maclaurin sum formula to derive a
closed-form expression for the infinite series representation of Green’s function that occurs for a finite length
cable beam or string. He then derived finite controllers in the Laplace transform domain for both an acoustic
space and a cable beam and presented frequency-domain results. Recently, Panza [9] applied the
Euler–Maclaurin sum formula to a harmonic series of modes in the 2D duct to predict the attenuation of a
dissipative silencer.

In this paper, an approximate closed-form expression for Green’s function is obtained by applying the
Euler–Maclaurin sum formula directly to the infinite series form of Green’s function in the space–time
domain. The method is different from that in Refs. [7,8] where the direct application is in the space-Laplace
transform domain and in Ref. [9] where the series results from a harmonic excitation. Additionally, the 2D
region for this paper gives an extra space bound over the regions in Refs. [7,8] resulting in more complex
functions arising from the summing procedure. The approximate closed-form Green’s function is compared to
the infinite series form in both the time and frequency domains. The approximate closed-form Green’s
function is applied to determine the transient response to an exponential input and the frequency response for
a model-based feedforward and a feedback active control scheme.
2. Green’s function modal expansion

Consider a 2D acoustic space x, z bounded by perfectly reflective surfaces at z ¼ 0 and H. Practical
examples of such a region include a thin rectangular duct and an acoustical tunnel. Green’s function g(x,z,t) is
the solution to the partial differential wave equation

q2gðx; z; tÞ
qx2

þ
q2gðx; z; tÞ

qz2
�

1

c2
q2gðx; z; tÞ

qt2
¼ �dðx� xoÞdðz� zoÞdðtÞ, (1)

where c is the speed of sound and boundary conditions are given as

qgðx; z; tÞ

qz
¼ 0 at z ¼ 0 and H. (2)

The modal expansion that satisfies the partial differential equation (PDE) and boundary conditions is
given by

gðx; z; tÞ ¼
X1
n¼0

cos
npz

H

� �
qnðx; tÞ. (3)

Defining G(x,z,s) as the Laplace transform from time t to s, multiplying by cos (mpz/H), integrating over z,
and using modal orthogonality, an infinite number of modal ordinary differential equations for the Laplace
transform Qn(x,s) are given by

d2Qnðx; sÞ

dx2
�

np
H

� �2
þ

s

c

� �2� �
Qnðx; sÞ ¼ �

2

H
dðx� xoÞ cos

npz0

H

� �
; n ¼ 0; 1; 2; . . . ;1. (4)
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Defining Qn(z,s) as the Fourier transform from space x to z and applying the Fourier transform to Eq. (4)
gives

QnðB; sÞ ¼
2

H

e�jxoB cos npzo=H
� �

B2 þ np=H
� �2

þ s=c
� �2h i . (5)

Applying the inverse Fourier transform from z to x gives

Qnðx; sÞ ¼
1

H

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np=Hð Þ

2
þ s=cð Þ

2
p

x�xoj j cos npz0=H
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np=H
� �2

þ s=c
� �2q . (6)

In previous work [7,8], the application of the Euler–Maclaurin sum formula to a modal sum in the Laplace
domain s, as represented by

Gðx; z; sÞ ¼
X1
n¼0

cos
npz

H

� �
Qnðx; sÞ, (7)

resulted in an integral with an exact solution. However, this is not the case for the specific Qn(x,s)
given in Eq. (6). For this paper, the modal expansion will first be transformed from the Laplace
domain s to the time domain. Inverting Eq. (6) gives Green’s function as an infinite series of Bessel
functions:

gðx; z; tÞ ¼
c

H

X1
n¼0

Jo

npc

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 �

x� xo

c

� �2r !
U t�

x� xoj j

c

	 

cos

npzo

H

� �
cos

npz

H

� �
, (8)

where U is the unit Heaviside step function.
Letting

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 �

x� x0

c

� �2r

and expanding the cosine product gives a relative Green ‘s function

gRðx; z; tÞ ¼
2Hgðx; z; tÞ

cU t� x�xoj j

c

� � ¼ X1
n¼0

J0
npct

H

� �
cos

npðz� z0Þ

H

� �

þ
X1
n¼0

J0
npct

H

� �
cos

npðzþ z0Þ

H

� �
. ð9Þ

3. Application of Euler–Maclaurin sum formula

The basic form of the formula is given by Apostal [10]

X1
n¼0

f n ¼

Z 1
0

f ðmÞdmþ
1

2

	 

f ð0Þ þ f ð1Þ½ � �

Z 1
0

qf

qm

X1
k¼1

sinð2pkmÞdm
pk

dm: (10)

Defining z1 ¼ z+zo, z2 ¼ z– zo and applying Eq. (10) to the sums in Eq. (9), with the order of integration and
summation switched, gives

gRðx; z; tÞ ¼
2Hgðx; z; tÞ

cU t�
x� xoj j

c

	 
 ¼X2
i¼1

Z 1
0

Jo

mpct
H

� �
cos

mpzi

H

� �
dmþ 1þ Rðx; z; tÞ, (11)
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where R is given by

Rðx; z; tÞ ¼ �
X2
i¼1

X1
k¼1

1

pk

Z 1
0

q
qm

Jo

mpct
H

� �
cos

mpczi

H

� �h i
sin ð2pkmÞdm. (12)

Applying integration by parts to the integral in Eq. (12), all of the integrals in Eqs. (11) and (12) have
solutions from Bowman [11] given asZ 1

0

JoðmaÞ cosðmbÞdm ¼
Uða� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p þ

Uðb� aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� a2

p , (13)

where the Heaviside step function U allows for all possibilities of a and b.
Eq. (11) can be written as

gRðx; z; tÞ ¼ 1þ
X2
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U
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H
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2
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3
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with R(x,z,t) from Eq. (12) written as
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Eqs. (14) and (15) provide an exact solution for Green’s function that is a different form than the modal
representation of Eq. (8). It has the appearance of an images sum form but is not the actual sum of the infinite
number of line source images between the planes perpendicular to the z direction. The constant term is one-
half of the plane wave component and the maximum value of the remainder infinite sum is shown below to be
the other half of the plane wave component. The two finite terms represent the majority of the higher-order
modal reverberation or in essence the primary contribution of the many images due to the two parallel
reflecting planes. Although image like in form, they are not just the first two source images due to the parallel
planes. The remainder terms with the summation over index k are essentially higher-order versions of the two
finite terms. A similar result is given by Panza [8] for the case of two parallel plates.

The finite number of terms in Eq. (14) (i.e. other than the R(x,z,t) series) comprises the main part of the
Euler–Maclaurin sum. The infinite sums in R(x,z,t) of Eq. (15) are useful for showing the connection between
their specific form and the Bessel function form of the modal terms and for showing the basic role of the
Euler–Maclaurin sum formula in providing this connection. For practical computational and design uses
intended for this paper, a finite number of terms are required with an approximation for the remainder
R(x,z,t). Apostal [10] gives another more useful form for the Euler–Maclaurin sum formula given by

X1
n¼0

f n ¼

Z 1
0

f ðmÞdmþ
1

2

	 

f ð0Þ þ f ð1Þ½ � þ

Z 1
0

qf

qm
m� ½m� �

1

2

	 

dm, (16)

where [ ] represents the smallest integer part. The second integral is the term R(x,z,t)/2 because there are two
sums in the modal expansion of Eq. (9).

The term in the second integral in Eq. (10) is a staircase function which represents the infinite series. The
goal of this paper is obtain an approximate closed-form solution that has only a few terms so that it may be
used as a model in applications instead of a truncated version of the infinite series of Eq. (9) where many terms
may be required. Panza [7] has shown that the second integral term in Eq. (16) can be viewed as remainder
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with an upper bound. The upper bound of R(x,z,t) is a remainder given by

RMax ¼ 2

R1
0

qf

qm
m� ½m� �

1

2

	 

dm

����
����pMax m� ½m� �

1

2

����
���� R10 qf

qm
dm

����
����

¼
1

2

R1
0 df

�� �� ¼ 1

2
f ð1Þ � f ð0Þ
�� �� ¼ 1

2

2
6664

3
7775 ¼ 1. (17)

The approximate relative Green’s function in Eq. (14) is given by

gRðx; z; tÞ ¼ 1þ
X2
i¼1

U
pct
H
�

pzi

H

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pct
H

� �2
�

pzi

H

� �2r þ

U
pzi

H
�

pct
H

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pzi

H

� �2
�

pct
H

� �2r
2
664

3
775þ RMax. (18)

From the series in Eq. (9), the n ¼ 0 terms in the Bessel functions represent the plane wave component given
as gR ¼ 2. Thus the Euler–Maclaurin sum of Eq. (18) provides the plane wave as gR ¼ 1+RMax ¼ 2 with the
two term sum giving an approximate closed-form representation of all of the higher-order modes.

4. Applications with numerical examples

4.1. Transient response

The Euler–Maclaurin solution is expected to apply to the general case of system dimensions. A typical
example is presented here. The transient behavior of the Green’s function is given for a numerical case where
H ¼ 3.1m, x– xo ¼ 9.1m, and z ¼ zo ¼ 0. The 3.1m height may represent an acoustical tunnel or large duct
where higher-order modes start to become significant. The relative Green’s function times the Heaviside step
U t� x� xoj j=c

� �� �
is computed. This gives the result (2H/c)g(x,z,t). Twenty terms are sufficient for

convergence in the series sum of Eq. (9) to show the contrast between the series and Euler–Maclaurin sum
solutions. Fig. 1 gives a comparison of the series solution of Eq. (9) with the approximate closed-form
Euler–Maclaurin sum solution of Eq. (18). For all Euler–Maclaurin sum results given in this paper, remainder
term RMax ¼ 1 is included because it provides one-half of the plane wave. For a full time range in Fig. 1(a), the
Euler–Maclaurin solution gives a smooth monotonically decreasing response and reaches a steady-state value
of two as obtained from the series solution. The value of two represents the plane wave component. The peak
value at t�(x/c) is very large and is not shown on the plot. The series solution gives a series of transient peaks
all along the time span while approaching the plane value of two. Fig. 1(b) gives a closer look at the higher-
order terms (i.e. excluding the plane wave) for the early part of the process in the vicinity of t ¼ x/c. Here it is
seen that the higher-order part of the Euler–Maclaurin solution does reasonably match that for the series
solution. The advantage of the Euler–Maclaurin solution is that it gives only a few terms compared to much
more required for the series solution. In fact, for the specific case of z ¼ zo ¼ 0, only two terms in Eq. (18)
Fig. 1. Green’s function Euler–Maclaurin sum closed-form solution (- - - -) vs. series solution (——): (a) full time response and (b) early

part of the transient.
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form the approximate Green’s function compared to 21 modal terms required for the series form in Eq. (9).
The approximate solution provides a trend similar to the series solution but does not contain the small
oscillatory peaks occurring after the initial peak near t ¼ x/c. However, the approximate solution matches the
series solution very well in the vicinity of t ¼ x/c where the Green function values are very large. The primary
purpose of the approximate solution is to use it for the predicting transient response to a pulse type input and
to use it in model-based controllers. For the former, since determining the response to a particular transient
input requires the Green’s function to be used in a convolution with the input, it is shown in this paper that the
Euler–Maclaurin approximate closed-form expression matches the infinite series close enough for it to be a
reasonable alternative. The convolution process with a bounded input tends to smooth out ripples in the
Green’s function.

A time decaying exponential input is first used to demonstrate the accuracy of the Euler–Maclaurin
solution. Convolution with a volume velocity input proportional to an exponential f(t) ¼ e�at requires the
derivative of the Green’s function and is given by

yðtÞ ¼

Z t

0

f ðtÞ
dgðt� tÞ

dt
dt: (19)

Integration by parts for the exponential input gives

yðtÞ ¼ �e�atgð0Þ þ gðtÞ � a
Z t

0

e�atgðt� tÞdt. (20)

For g, we will use the form gRðx; z; tÞU t� x� xoj j=c
� �� �

as in the transient Green’s function results above.
Eq. (9) is used for the series solution and Eq. (18) is used for the Euler–Maclaurin solution. The
Euler–Maclaurin solution can be expected to give a good representation of the transient decay over time
because the convolution integral tends to smooth out the peaks and valleys that are present in the series
solution. For the case where z ¼ zo ¼ 0, the integral in Eq. (20) is given by

For the infinite series,Z t

0

e�atgðt� tÞdt ¼ 2
X1
n¼0

Z t� x=cð Þ

0

e�at Jo

npc

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� tð Þ

2
�

x

c

� �2r !
dtU t�

x

c

� �
. (21)

For Euler–Maclauirn closed-form sum with remainder equal to one,

Z t

0

e�atgðt� tÞdt ¼
2

a
1� e�a t� x=cð Þð Þ
h i

þ 2

Z t� x=cð Þ

0

e�at

pc=H
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t� tð Þ
2
� x=c
� �2q dt

8><
>:

9>=
>;U t�

x

c

� �
. (22)

Fig. 2(a) shows that for the case of H ¼ 3.1m, x�xo ¼ 9.1m, and z ¼ zo ¼ 0, the agreement between the
series and the closed-form Euler–Maclaurin sum is very good for tX0.1 s. Fig. 2(b) shows that after a short
Fig. 2. Transient response to exponential input for tX0.1 s for Euler–Maclaurin sum closed-form solution (- - - -) vs. series solution (——):

(a) all terms included and (b) plane wave term only.
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Fig. 3. Early part of higher-order terms transient response to exponential input for Euler–Maclaurin sum closed-form solution (- - - -) vs.

series solution (——): (a) for tp0.1 s and (b) for tp0.04 s.

Fig. 4. Magnitude of frequency response function generated from the Green’s function (——) and from the plane wave transfer function

(- - - -): (a) series solution and (b) Euler–Maclaurin sum closed-form solution.
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time, the plane wave contribution dominates the response. Thus the small peaks in Fig. 1(a) after t ¼ 0.1 s
due to the series terms may be considered insignificant. Fig. 3(a) gives a comparison of the
higher-order components for the time range from t ¼ 0 to 0.1 s just after the input is applied The response
using the one term in the Euler–Maclaurin approximate Green’s function provides the same basic trend
as the 20 higher-order mode terms (i.e. total less plane wave) in the series response. Additionally, Fig. 3(b)
shows that the peak value of 7.3 for the Euler–Maclaurin solution is close to the peak value of 6.2 for
the series solution. The time shift occurrence of peak values of approximately 0.005 s may be considered
insignificant.

4.2. Frequency response

The frequency response is obtained from the Laplace transform of Green’s function. For the series solution,
s ¼ io is substituted into Eqs. (6) and (7). For the Euler–Maclaurin solution, the case of z ¼ z0 ¼ 0 gives a
relative Green’s function expressed as

gRðtÞ ¼ 1þ RMax þ 2
U t� x� xo=c

� �� 
pc=H
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � x� xo=c
� �2q . (23)

From Chu et al. [12], the Laplace transform is given by

GRðsÞ ¼ 1þ RMax½ �
1

s
þ

2H

pc
Ko

x� xo

c

� �
s

h i
, (24)

where Ko is the modified Bessel function of the second kind.
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Fig. 4(a) gives the magnitude of the series system frequency response function from Eqs. (6) and (7) and
Fig. 4(b) gives the magnitude of the Euler–Maclaurin system frequency response function from Eq. (24) with
s ¼ io. The monotonically decreasing plane wave transfer function is included for reference. The magnitude of
the series system frequency response function contains uniformly spaced large resonance peaks (with actual
values much greater than shown) at the cross mode resonance frequencies f n ¼ nc=2H and a level of random
like peaks in the vicinity of the plane wave. The magnitude of the Euler–Maclaurin system frequency response
function contains uniformly space bounded peaks somewhat symmetrical to the plane wave. The spacing of
the peaks is approximately 50% closer than cross mode resonance frequencies. The fact that one term
of the Euler–Maclaurin sum provides a frequency response function with higher-order mode oscillatory
behavior somewhat similar in form to the to the 20-term series higher-order mode sum indicates that it
may be a more useful and much simpler substitute for designing control systems for providing damping
to reduce the large resonance peaks inherent in an acoustic space that initially has very little dissipation. To
show the utility of the simple Euler–Maclaurin transfer function, two control schemes are presented. The
model-based nature of the schemes means that the Euler–Maclaurin transfer function model is used in the
controller design while the actual transfer function from the infinite series is used as the actual system
simulation.

One scheme is based on a simple model-based feedforward control scheme designed with the
Euler–Maclaurin transfer function to provide a desired output performance over a broad range of frequencies
when an input disturbance Fd(s) excites the system. Fig. 5 shows a block diagram schematic for the system
where a measurement of the disturbance is required. Although the disturbance measurement in this scheme
may be difficult to practically implement, it is presented here to demonstrate another way to utilize the finite
Euler–Maclaurin sum. We define GS(s) as the actual plant transfer function based on the infinite series form of
gR(t) (i.e. the Laplace transform in Eqs. (6) and (7)) and GEM(s) as the closed-form plant transfer function
based on the Euler–Maclaurin form for gR(t) (i.e. from the Laplace transform in Eq. (24)). We also define a
control input U(s) proportional to the disturbance giving U(s) ¼ GFF(s)Fd(s) where GFF(s) is the feedforward
controller transfer function. The system output Y(s) for feedforward control is given in terms of the series
transfer function by

Y ðsÞ ¼ UðsÞGSðsÞ þ F dðsÞGSðsÞ. (25)

For the controller design, consider a desired output given in terms of the Euler–Maclaurin closed-form
transfer function given by

YdesðsÞ ¼ UðsÞGEMðsÞ þ F dðsÞGEMðsÞ ¼ TFdesðsÞFdðsÞ, (26)

where TFdes(s) is a desired transfer function for the system.
Solving Eq. (26) for U(s) and substituting into U(s) ¼ GFF(s)Fd(s) gives a finite form for the feedforward

controller transfer function in terms of the closed-form model GEM(s). This form is given as

GFFðsÞ ¼
TFdesðsÞ

GEMðsÞ
� 1. (27)
GFF (s)

GS (s)

Fd (s)

U (s)

Y (s)
+ 

+ 

Fig. 5. Block diagram schematic for feedforward control scheme.
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Using GFF(s) from Eq. (27) in U(s) ¼ GFF(s)Fd(s) and substituting into Eq. (25), the actual system output
transfer function with control is given as

TFactualðsÞ ¼
Y ðsÞ

FdðsÞ
¼ TFdesðsÞ

GSðsÞ

GEMðsÞ
. (28)

Thus if one uses the actual plant transfer function as the control model plant transfer function
(i.e. GEM(s) ¼ GS(s)), the actual system output transfer function would equal the desired transfer function
(i.e. TFactual(s) ¼ TFdes(s)). However, the feedforward control transfer function GFF(s) would be in principle
an infinite series of terms and would not be practical to implement even in a truncated form of at least 21 terms
that would be required for convergence. The advantage of using a finite Euler–Maclaurin sum result
(with only one term for higher-order modes) for the plant transfer function in the model-based controller is the
use of a finite feedforward controller transfer function. Fig. 6(a) gives a comparison of the magnitude of the
system frequency response function with control based on the finite Euler–Maclaurin sum and the desired
transfer function. The desired frequency response of the system is set to be constant jTFdesðsÞj ¼ 0:0001 which
drives the controlled frequency response magnitude to be in this neighborhood. The vertical scale of Fig. 6(a)
is the same as the series transfer function in Fig. 4(a) to allow a direct comparison of controlled and
uncontrolled systems. This comparison indicates a significant reduction of magnitudes obtained with the finite
Euler–Maclaurin-based feedback controller. This reduction is a reflection of the significant amount of
damping supplied by the control. Fig. 6(b) gives the results over a smaller frequency and magnitude window
indicating that the controlled magnitudes turn out to be relatively small oscillations above the magnitude of
the desired transfer function. Thus a practical control transfer function GFF(s) may be implemented.

Another basic control scheme is shown in Fig. 7. It is a model-based output feedback control scheme
requiring a more practical measurement of the system output instead of measuring the disturbance. The
Euler–Maclaurin model is used to determine the controller transfer function required to provide a desired
output over a broad range of frequencies. The closed loop system transfer function is given by

Y ðsÞ

FdðsÞ
¼

GSðsÞ

1þ GSðsÞGFBðsÞ
, (29)
Fig. 6. Magnitude of the closed loop frequency response function for feedforward control (—) and the constant desired value of

TFdes ¼ 0.0001 (- - - -): (a) full frequency range and (b) smaller frequency window.

GFB (s) GS (s)

Fd (s)

Y (s)

U (s) + 

_

Fig. 7. Block diagram schematic for feedback control scheme.
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Fig. 8. Magnitude of the closed loop frequency response function for feedback control (——) and the constant desired value of

TFdes ¼ 0.0005 (- - - -): (a) full frequency range and (b) smaller frequency window.
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where GFB(s) is the feedback controller transfer function. For the controller design, consider a desired closed
loop transfer function TFdes(s) and use the simple finite Euler–Maclaurin transfer function GEM(s) in Eq. (29)
in place of GS(o) to solve for GFB(s). The finite controller transfer function is given by

GFBðsÞ ¼
GEMðsÞ � TFdðsÞ

GEMðsÞTFdðsÞ
. (30)

The actual closed loop system transfer function is given by

TFactualðsÞ ¼
Y ðsÞ

Fd ðsÞ
¼

GSðsÞ

1þ GSðsÞ
GEMðsÞ � TFdðsÞ

GEMðsÞTFdðsÞ

� �. (31)

As in the feedforward scheme, if one uses the actual plant transfer function as the control model plant
transfer function (i.e. GEM(s) ¼ GS(s)), the actual system output transfer function would equal the desired
transfer function (i.e. TFactual(s) ¼ TFdes(s)). Again one has the advantage of using a finite Euler–Maclaurin
sum result (with only one term for higher-order modes) for the plant transfer function in the model-based
controller design to give the finite feedback controller transfer function of Eq. (30). Fig. 8(a) gives a
comparison of the magnitude of the system frequency response function with control based on the finite
Euler–Maclaurin sum and the desired transfer function. The desired transfer function is chosen as a flat
spectrum of magnitude |TFdes(s)| ¼ 0.0005 to drive the floor of the controlled magnitude to be in its
neighborhood. The vertical scale of Fig. 8(a) is the same as the series transfer function in Fig. 4(a) to allow a
direct comparison of controlled and uncontrolled systems. This comparison indicates a significant reduction of
magnitudes obtained with the finite Euler–Maclaurin-based feedback controller. This reduction is a reflection
of the significant amount of damping supplied by the control. Fig. 8(b) gives the results over a smaller
frequency and magnitude window indicating that the controlled magnitudes turn out to be relatively small
oscillations near the magnitude of the desired transfer function. Comparison of Figs. 8 and 6 indicates that the
feedback control scheme provides more reduction of resonance peaks than the feedforward control scheme,
even with a higher target for the desired transfer function. Also, a practical control transfer function GFB(s)
may be implemented for the feedback scheme.

5. Remarks

The work presented here indicates that the Euler–Maclaurin sum formula can be successfully applied to
provide an approximate closed-form solution for the infinite series of modal terms representing the Green’s
function in a 2D rectangular acoustic space. A simple form of the Euler–Maclaurin solution with only a few
terms gives reasonably accurate results compared to the series solution for both time and frequency responses
and for application to a transient exponential input. A comparison of oscillations and ripples relative to a
plane wave component indicates that the tradeoff of using the simple less accurate Euler–Maclaurin
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approximate solution versus the more complex series solution may be beneficial for calculation and use in the
design of controllers. Both feedforward and feedback control schemes are used to design finite controller
transfer functions with the Euler–Maclaurin model which result in system transfer functions with significantly
reduced resonance peaks in frequency space. The results indicate that the simple Euler–Maclaurin Green’s
function may be more efficient than the infinite series form for active control and optimization applications
where the acoustic solution is only part of the entire mathematical problem. The approach may also be
expected to provide more insight into system behavior and be applicable to other physical phenomena
involving an infinite series of modal terms.
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